Eigen-analysis of nonlinear PCA with polynomial kernels

نویسندگان

  • Zhiyu Liang
  • Yoonkyung Lee
چکیده

There has been growing interest in kernel methods for classification, clustering and dimension reduction. For example, kernel Fisher discriminant analysis, spectral clustering and kernel principal component analysis are widely used in statistical learning and data mining applications. The empirical success of the kernel method is generally attributed to nonlinear feature mapping induced by the kernel, which in turn determines a low dimensional data embedding. It is important to understand the effect of a kernel and its associated kernel parameter(s) on the embedding in relation to data distributions. In this paper, we examine the geometry of the nonlinear embedding for kernel PCA when polynomial kernels are used. We carry out eigenanalysis of the polynomial kernel operator associated with data distributions and investigate the effect of the degree of polynomial. The results provide both insights into the geometry of nonlinear data embedding and practical guidelines for choosing an appropriate degree for dimension reduction with polynomial kernels. We further comment on the effect of centering kernels on the spectral property of the polynomial kernel operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gabor feature-based apple quality inspection using kernel principal component analysis

Automated inspection of apple quality involves computer recognition of good apples and blemished apples based on geometric or statistical features derived from apple images. This paper introduces a Gabor feature-based kernel principal component analysis (PCA) method by combining Gabor wavelet representation of apple images and the kernel PCA method for apple quality inspection using near-infrar...

متن کامل

Analysis of convergence of solution of general fuzzy integral equation with nonlinear fuzzy kernels

Fuzzy integral equations have a major role in the mathematics and applications.In this paper, general fuzzy integral equations with nonlinear fuzzykernels are introduced. The existence and uniqueness of their solutions areapproved and an upper bound for them are determined. Finally an algorithmis drawn to show theorems better.

متن کامل

Kernel Pca Pattern Reconstruction via Approximate Pre-images 1 Kernels and Feature Spaces

Algorithms based on Mercer kernels construct their solutions in terms of expansions in a high-dimensional feature space F. Previous work has shown that all algorithms which can be formulated in terms of dot products in F can be performed using a kernel without explicitly working in F. The list of such algorithms includes support vector machines and nonlinear kernel principal component extractio...

متن کامل

Evaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques

This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...

متن کامل

On the Use of Non-Linear Polynomial Kernel SVMs in Language Recognition

Reduced-dimensional supervector representations are shown to outperform their supervector counterparts in a variety of speaker recognition tasks. They have been exploited in automatic language verification (ALV) tasks as well but, to the best of our knowledge, their performance is comparable with their supervector counterparts. This paper demonstrates that nonlinear polynomial kernel support ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical Analysis and Data Mining

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013